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Abstract. A class of self-similar solutions are rederived for the nonlinear thermal conduc- 
tion problem. Variational methods applied to the heat flux provide an expression valid 
over a broad range of physical parameters. The results are particularly useful for the 
understanding of heat flux in the plasmas of inertial confinement fusion. They describe 
both rapid laser and radiant heating of matter. The developments are shown to correspond 
well to several classical examples. 

1. Introduction 

Nonlinear conduction of heat in the early phases of rapid energy input to matter is a 
classical problem in the field of high-temperature hydrodynamics. Its application to 
the physics of inertial confinement fusion has prompted significant renewed interest. 
Similarity solutions were examined by Marshak (1958) and more extensively by 
Zeldovich and Raizer (1967). Marshak found approximate solutions for a thermal 
conduction wave driven (in planar geometry) by an exponentially rising temperature 
at the material boundary, whereas Zeldovich and Raizer described analytic solutions 
for a thermal wave driven by an instantaneous deposition of energy at the material 
boundary. 

The mathematics of these similarity solutions has been extensively developed in 
the literature. Gilding and Peletier (1976) provide a comprehensive discussion of the 
topic as well as a survey of the research that contributed to its development. Grundy 
(1979) formulates a phase plane analysis of the similarity solution for the conduction 
equation. This reveals a complete picture of its existence and uniqueness properties. 
It also permits an examination of the behaviour of the solutions in the phase plane. 

In this paper a full development of the details is restated for a particular form of 
the similarity substitution for the nonlinear thermal conduction problem. At the same 
time the special cases of Marshak and Zeldovich, mentioned above, are tied together 
in the broad class of self-similar solutions. Then close approximate solutions are 
obtained for the intermediate cases in order to illustrate the scaling of the thermal 
wave parameters. Well known variational methods (Becker 1964) are employed to 
generate the family of approximate solutions. The combination of these mathematical 
techniques provides a clear picture of the physics of thermal conduction in inertial 
fusion plasmas. 
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2. Similarity variables 

Assuming constant density, the standard form of the nonlinear thermal conduction 
equation is given by 

aT/at =AV * T"VT (1) 

where T is the material temperature, A = K ~ / P C ~  is a constant, and K -KOT" is the 
thermal conductivity. The notation is that of Zeldovich and Raizer (1967) where p 
is the density and c ,  is the specific heat at constant volume. The energy flux 

S = -pc,AT"VT ( 2 )  
can be either electron thermal flux, where n =$, or radiation flux, where n ==4-5. 

by assuming a product solution of the form 
Self-similar solutions to equation (1) in planar geometry can be most easily found 

T ( x ,  t! = Tog(t)h(5) (3) 

5 = x/(Z(l)Lo) .  (4) 

where the similarity variable 

L o  is an initial length scale to be defined below, and g(0) = h (0 )  = 1. Notice that g ( t )  
describes the temperature dependence at the boundary (initial temperature To). Using 
(3) and (4) in (l), we obtain 

( 5 )  

where the dots are time derivatives and the prime is a derivative with respect to 5. 
If Z + 0, we can rewrite ( 5 )  as 

(6) 

(Z* /g"" ) (gh  -gh ' (Z /Z)  = ( h  "h ' ) ' (AT: /L i )  

(ZZ/ g " )( gZ/ g Z  - (h ' / h ) = (h "h ' ) 'h  - I  (A T;f / L  

For (6 )  to be satisfied, we must require 

gz/gZ = p 

ZZjg" = v 

and 

for a pair of constants p and v. Choose the solution g =Z6 for equation (7). Thus, 
Z ( 0 )  = 1 since g(0) = 1. Substitute this result in (8) to obtain 

zz = vZ6". (9) 
Then, for pn # 2, 

z = [1 + ( 2 - p , ) v t ] " ( * - 6 " )  

and, for p n  = 2, 

z =e"' (11) 

where we have satisfied the boundary condition Z(0) = 1. 
It is important to notice that the parameters v and p are restricted by the nature 

of the physical problem. From equation (4) the velocity of the heat front located at 
5 = 50 is given by 

X f  = 5uLoz. (12) 
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Thus both equations (10) and (1 1) indicate that we must have v > O  for the heat wave 
to be forward-going. The domain of p is restricted to p s 2/n  in order to avoid 
infinite velocities. 

With the above transformations and with the initial scale length defined by L; = 
AT;Iv-’, we are left with the differential equation in the similarity variable, 6, 

(13)  
The boundary conditions are h (0) = 1, and the requirement that the flux S - h “h’ goes 
to zero at some point to > 0 inside the material. 

( h  “h’)‘ = ph - [h’. 

3. Variational solutions 

Although standard numerical techniques can be readily applied to the integration of 
equation (13), it is instructive to obtain approximate analytic solutions over a large 
parameter domain. To do this, it is helpful to use the following transformations. We 
let h = q l / ”  and U = [/to, such that h(&) = cp”“(1) = 0. Equation (13) becomes 

(14) 

where K = [ i n ,  and the prime is a derivative with respect to U. 
The equation is now cast in the form of a nonlinear eigenvalue problem, where 

we must find the positive value of K such that cp is monotone decreasing on the 
interval 0 s U s 1 and goes to zero at U = 1. To determine approximate (and useful) 
analytic solutions to (14), we have employed a least squares variational technique 
(Becker 1964) and generated an expression for the corresponding eigenvalue K. A 
schematic description of our approach to the problem follows. 

ncpcp’! + ( (P ’ )~  = K(pncp - ucp’) 

We choose a trial function cpT given by 

(PT= 1 -au + (a  - 1)u2.  (15) 

This function is selected for several reasons. Besides satisfying the boundary condi- 
tions, it is an exact solution in the limit p = -1 (Zeldovich’s solution) and is approxi- 
mately correct for p = 2/n  (Marshak’s solution). But more importantly, as discussed 
in the following paragraphs, it is a close approximation to the exact solution over a 
large parameter regime. 

A measurement of the validity of the approximation is given by the residual 

R (U = nPrcpT+ (cpk)* -K(pncpT - U c p k ) .  

This function is squared to make it  positive definite and then integrated over the 
interval 0 s U 6 1. The resulting functional takes the form 

L = l , ’ R ’ d u  = L ( a , n , p , K ) .  

Minimising L with respect to K and solving for K yields 



3396 F J Ma yer, J F McGrath and J W Steele 

Figures l (a )  and ( b )  are plots of K against a for n =2 .5  and 5 .  The large closed 
points of figure l ( b )  represent the values of K and a obtained from the numerical 
integration of equation (14). Figure 2 is a plot of the trial function (15) for the two 
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Figure 1. A plot of the eigenvalue K against a for the case of ( a )  electron thermal 
conduction, i.e. n = 2.5 and ( b )  radiation thermal conduction, i.e. n = 5. The parameter 
in both figures is p. 

U 

Figure 2. The full curves are plots of the trial function cpr(u) for a = 0 and 1. The points 
are the results of numerical integration of the exact differential equation (14) for parameter 
choices given as follows; 0, K = 0.2, p = -1, a =0.76; D K  =0.65, p =0.4, a = 1.0; + K = 2, p = -1, a =O. 
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extreme cases of figure 1(6), a = 0 and 1.  Also shown are the numerical integrations 
(points) of these cases and an intermediate case, a = 0.76. It is clear from these two 
figures that the trial function is quite close to the exact solution over a reasonable 
parameter range. 

Notice that the above results yield a value for to and hence an expression for the 
heat front. Thus, the front of the heat wave is always located at 

Xf = tOZ(t)LO 

60 = (KW, n ) / n ) 1 / 2 .  

with 

From equations (2) and (3), the flux at the boundary is given by 

pc,ATGflg"+' dh 
S O = - ~ C , A ( T " V T ) , = ~ =  - 

or, using g = z5, 

In terms of the trial function, the flux at the boundary is approximated by 

S O  = p c , v ~ ~  ~~u (nK )-l"z '(" + ' ) -I .  (20) 

Notice here that So scales as Zp(n+l)-l while, from equation (3), the temperature at 
the boundary T(0 ,  t )  scales as 2'. 

Now that the temperature distribution in the heat wave has been determined, it 
is possible to compute the total energy in the thermal wave at time t .  This is given by 

= nicuAh Tog(t)h (5) dx (21) Jox'" ) 

where Ah is the surface area of the heated region and ni is the ion number density. 
Substituting qT into equation (21) yields 

(22) 
E ( t )  = nic,AhT,,Lo(K/n) 1/2 Z 8+1 I ( a ) .  

The integral 

has the value 

~ ( a )  = [(2 - a ) / ( l  -a)1[(2 - u ) ~ / ( I  - u)]'/"B(I + ( I / n ) ,  1 + ( l / n  ), (1  - a)/(2 - a ) )  

where B(x,  y, z )  is the incomplete beta function (Abramowitz and Stegun 1970). We 
note here that according to equation (22) the energy is constant when p = -1 .  This 
corresponds to the first of the four special cases described below. 

(24) 
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4. Special cases 

There are four cases of special interest in the nonlinear thermal conduction problem. 
They correspond to the physical problems that have (i) energy released at the boundary 
(Zeldovich’s solution), (ii) constant temperature at the boundary, (iii) constant flux at 
the boundary, and (iv) exponential temperature dependence at the boundary (Mar- 
shak 1958). We will describe these four cases separately. 

4.1. Energy released at the boundary 

This case corresponds to the physical problem of rapid (compared with the heat wave 
motion) heating of a boundary layer of material which drives a heat wave with the 
average temperature dropping as more matter is heated. This problem has been 
examined extensively by Zeldovich and Raizer (1967).  Their solution, however, has 
finite energy released in zero initial material thickness, giving a somewhat unrealistic 
infinite temperature at the boundary at t = 0. In our formulation, the energy is released 
in a finite initial thickness of dimension xr(0) = td0. In this case, we have to choose 
p = -1 and a = 0. Then from equation (16)  we find K = 2 ,  and the trial function 
qT = (1 - U’). Zeldovich has shown this function to be an exact solution, with the 
thermal wave given by 

T(x ,  t )  = (TO/Z(t))(l  - x * / X : ( t ) ) l ’ “  ( 2 5 )  

where x d t )  = (2/n)”’L&(t)  and Z ( t )  = [ 1 + ( 2 + n ) v t ] ” ‘ 2 ’ ” ’ .  Here the constant, v, is 
not the heating rate but rather can be related to the total energy deposited in the 
heated layer at t = 0. We have v =ATon/Li  and To is determined from the energy 
integral. Using equations ( 2 2 )  and (24)  with a = 0, we have 

(26)  

where A h  is the surface area of the heated foil and where identities from Abramowitz 
and Siegun (1970, ch 6 )  are used to rewrite the incomplete beta function in terms of 
the gamma function. 

E -1 - 2 n , c L s i h ~ ~ o ( 2 / n  )1’2r(+)r(i + ( l / n ) ) / r ( ? +  l / n )  

4.2. Constant temperature at the boundary 

This case corresponds to the parameter choice p = 0. The front of the heat wave 
moves according to 

x r ( t )  = (K/n)”2(ATE/v)1’2( l  +2vt)”’ (27)  

and the flux at the boundary is given by 

S o ( t )  = pc,vLoTo(nK)-”2a (1 + 2vt)”’. (28)  

Here the time constant, U, is related to the rate of change of the flux at the boundary 
(decreasing) required to maintain a constant boundary temperature. In both of the 
above expressions we have chosen to display the dependence of the heat wave front 
on the initial parameters, To, v, and So(0). We note that the energy delivered to the 
material (see equation ( 2 2 ) )  increases as 

E ( t )  - (1 +2vt)”*.  (29)  
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4.3. Constant flux at the boundary 

This case corresponds to p = (n + 1)- '  as is seen from equation (20). The heat front 
moves according to 

x r ( t )  = (K /n  ) 1 / 2 ~ o { 1  + [ ( n  + 2 ) / ( n  + ~ ) l v t j ( ~ + ~ ) / ( ~ + ~ )  (30) 

where n <4.  The parameter Y is simply determined in terms of the boundary flux 
and the initial boundary values Lo  and To. From equation (20), we find that 

v = [ (nK)"2 / (pc ,LoToa) ]So  (31) 

ar,d, of course, the temperature at the boundary increases as 

= To{l + [ ( n  + 2 / ( n  + l ) ] ~ t } ' / ' ~ + ~ ) .  (32) l / ( n + l )  T(0 ,  t )  = ToZ 

4.4. Exponential temperature dependence at the boundary 

This case corresponds to Marshak's (1958) problem, where the boundary temperature 
starts at To and increases exponentially with time and with a heating rate of v. In 
our formulation, this case has p = 2 / n  and as can be seen from figures l ( a )  and ( b ) ,  
we have a = 1. The heat front moves according to 

x r ( t )  = ( K / n ) ' j 2 L o  e"' (33) 

T(x,  t )  = To exp(2vt/n)(l -x/xf) l /"  

E(t)-exp[(1+2/n)vt] .  (35) 

and the thermal wave profile is given approximately by 

(34) 

and the total energy obtained from equation (22) increases as 

We have described a class of self-similar solutions to a variety of nonlinear thermal 
conduction problems. Our formulation displays the similarity between the previous 
work of Zeldovich and Marshak and extends the class of self-similar solutions as well. 
In addition, we have derived the scaling relations between the various physical 
parameters and introduced physically reasonable boundary conditions for the start-up 
of the nonlinear heat wave. 
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